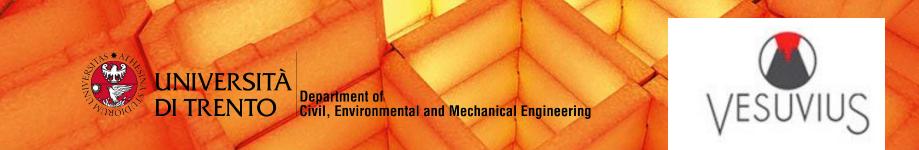
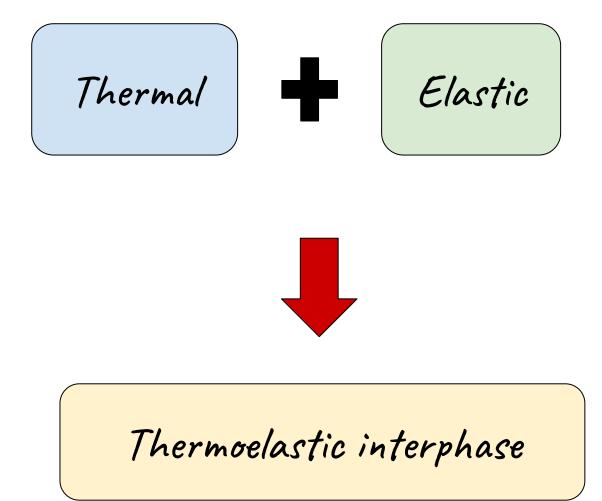
Transmission Conditions across a thin thermoelastic interphase June 8th, 2023

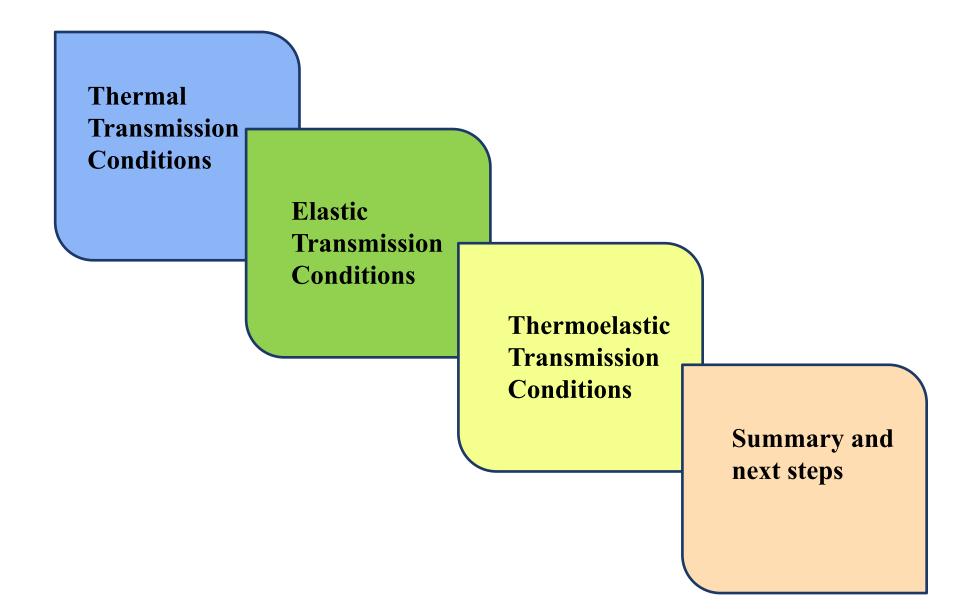
"Modelling and optimal design of refractories for high temperature industrial applications for a low carbon society"

-Shubhra Pande Andrea Piccolroaz Severine Romero-Baivier



This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 955944 – RE-FRACTURE2.





Why?

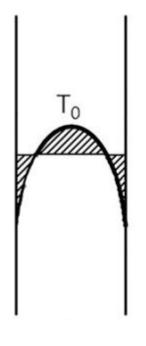
A body subjected to thermal shock will develop tensile stresses within itself.

At micro-level, local stresses accumulate at the boundaries

Leads to crack formation.

It is important to understand the transmission conditions occuring at the micro-level

T0 > Tf



Τ_f

Approaches

Taylor Series Expansion

$$f_{A_2} = f_{A_1} + \left(\frac{\partial f_{A_1}}{\partial y}\right)t + \left(\frac{\partial^2 f_{A_1}}{\partial y^2}\right)\frac{t^2}{2} + O(t^3)$$



Fig.1: Thin Interphase. Image taken from the thermal paper by Hashin.

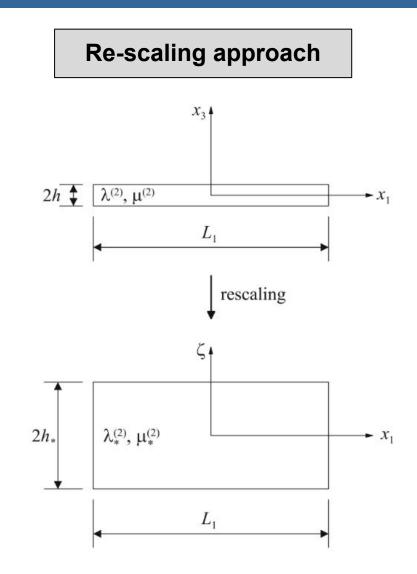
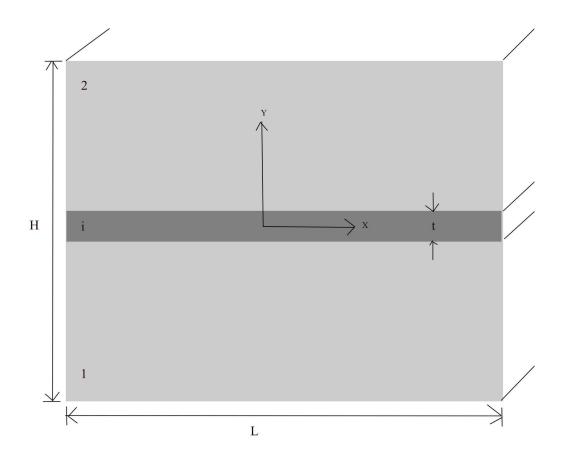


Fig.2: Image taken from the elasticity paper by Mishuris et al.

Development of Transmission Conditions for a thermal conductive interphase



GOVERNING EQUATIONS

1. Heat transfer equation: $\nabla \cdot (k\nabla T) + Q = c\rho \frac{\partial T}{\partial t}$

2. Fourier's Law: $\boldsymbol{q} = -\boldsymbol{k}(T)\nabla T$

Literature Background

Thin interphase/imperfect interface in conduction

- Z. Hashin \rightarrow Taylor Series expansion

Transmission Conditions

- Planar interface transmission conditions (without a heat

source)

-

$$\left(\frac{\partial T^{i}}{\partial \boldsymbol{n}}\right) t = \llbracket T \rrbracket$$
Jump in
temperature

$$\begin{bmatrix} q_n \end{bmatrix} = k_i \nabla_s^2 T^i t$$
Jump in heat
flux
$$\nabla_s^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}$$

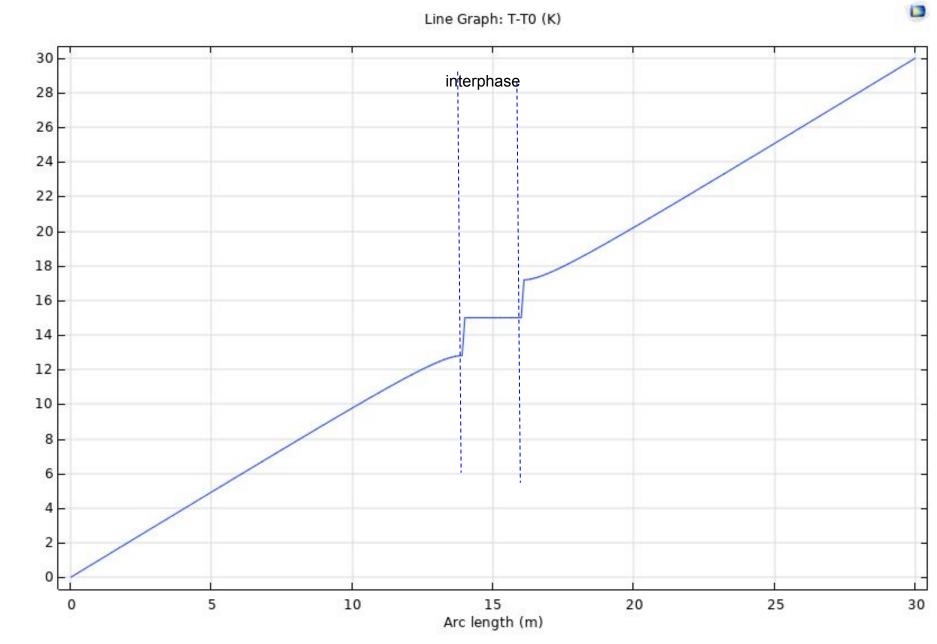
Transmission conditions for a planar interface with a heat source Q0:

$$\llbracket q_n \rrbracket = \left(k_i \nabla_s^2 T^i + Q_0 \right) t$$

Comsol: Geometry

 Parame 	eters		12 10	
Name	Expression	Value	8 ⁻	
L	30[m]	30 m	4-	c,
а	1[m]	1 m		
epsilon	0.1[m]	0.1 m	-2	
k1	10[W/m/K]	10 W/(m·K)	-4-	
k2	1[W/m/K]	1 W/(m·K)	-6	
ki	1e-6[W/m/K]	1E-6 W/(m·K)	-10	
beta	-1[K/m]	-1 K/m	-12	
Т0	293.15[K]	293.15 K	-14	¥
Q0	0.001[W/m^3]	0.001 W/m³	-16	-15 -10 -5 5 10
temp	→ O	Heat flux	C	a

Comsol: Temperature without Heat Sources

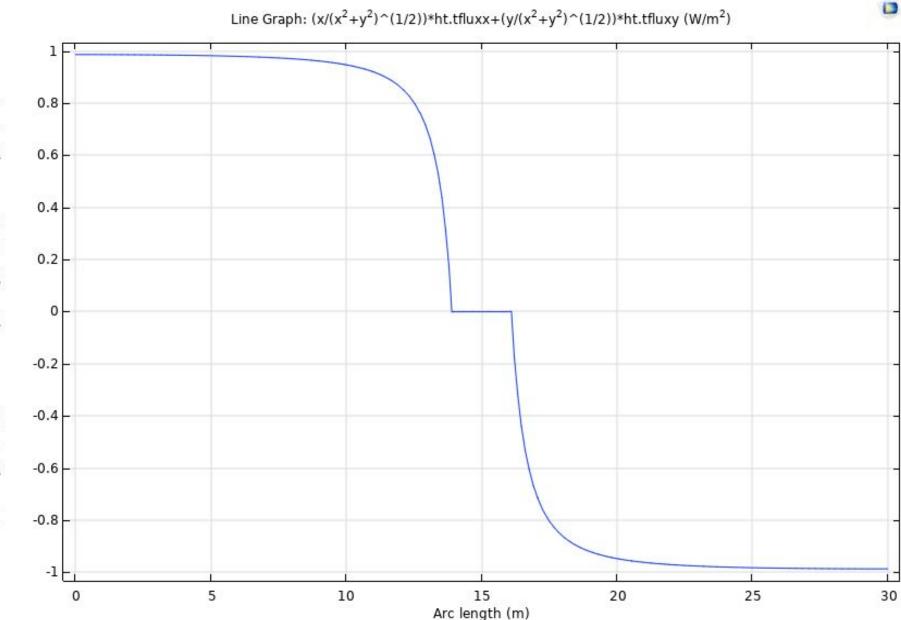


Comsol: Temperature with Heat Sources

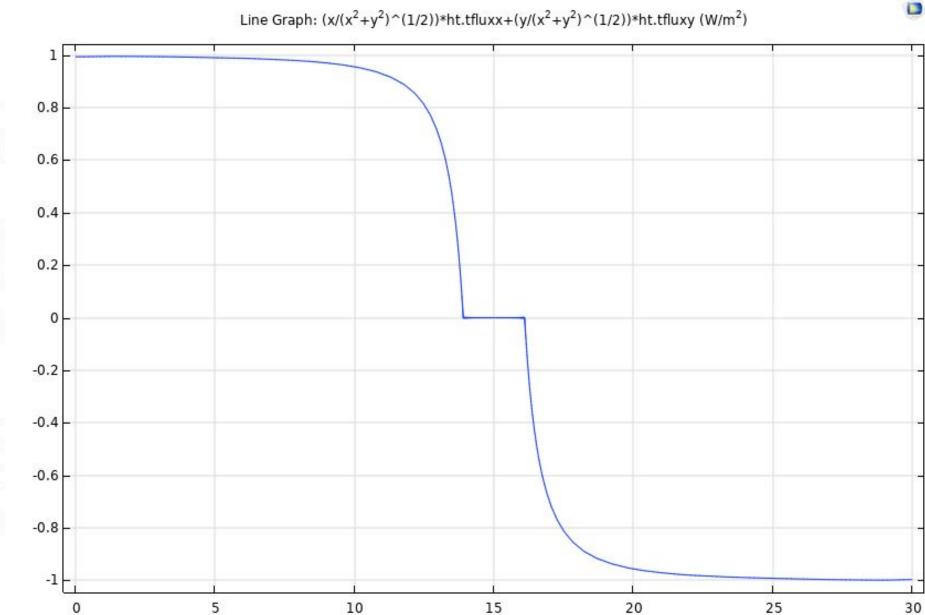
Line Graph: T-T0 (K) interphase Arc length (m)

T-T0 (K)

Comsol: Heat Flux without Heat Sources



Comsol: Heat Flux with Heat Sources



Arc length (m)

Development of Transmission Conditions for an elastic "spring-type" interphase

Linear Transmission Conditions

- First transmission conditions $\begin{bmatrix} u_1 \end{bmatrix} = \begin{bmatrix} \frac{\sigma_{11}}{\lambda_i + 2G_i} - \frac{v_i}{1 - v_i} (\varepsilon_{22} + \varepsilon_{33}) \end{bmatrix} t$ mp in the normal direction

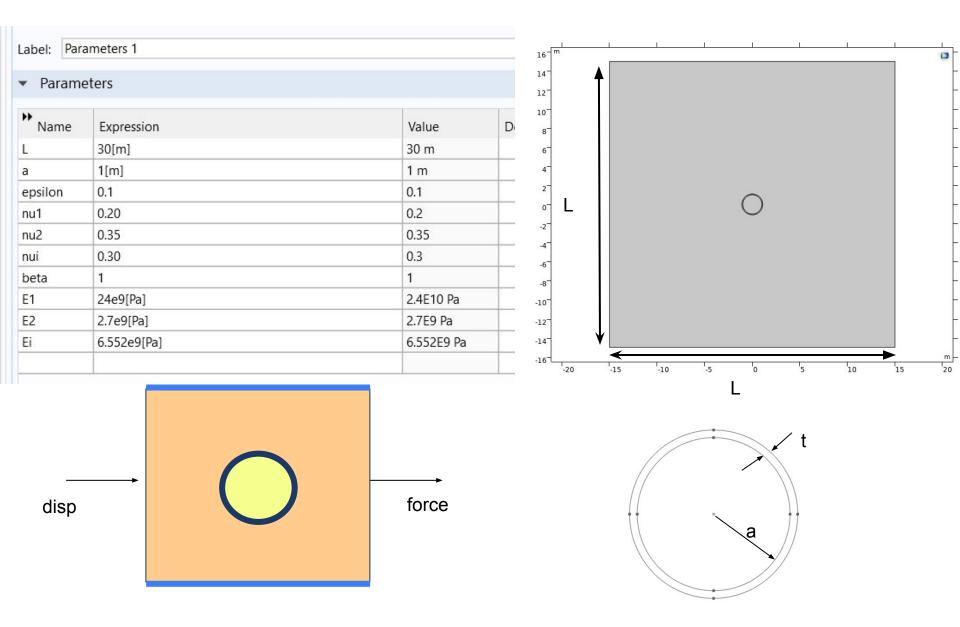
$$\llbracket u_2 \rrbracket = \left[\frac{\sigma_{12}}{G_i} - \frac{\partial u_1}{\partial x_2} \right] t$$

$$\llbracket u_3 \rrbracket = \left[\frac{\sigma_{13}}{G_i} - \frac{\partial u_1}{\partial x_3}\right] t$$

- Second Transmission conditions

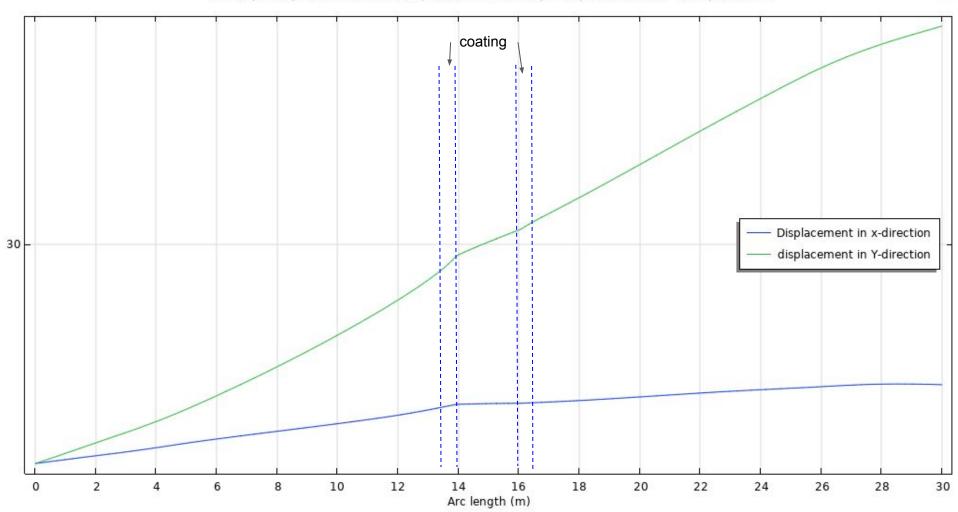
$\llbracket \sigma_{11} \rrbracket = -G_i [\nabla_s^2 u_1 + \frac{\partial}{\partial x_1} \left(\frac{\partial u_2}{\partial x_2} + \left(\frac{\partial u_3}{\partial x_3} \right) \right] t$	$\nabla_s^2 \equiv \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$
$\llbracket \sigma_{12} \rrbracket = -\lambda_i \frac{\partial \llbracket u_1 \rrbracket}{\partial x_2} - [(\lambda_i + G_i) \frac{\partial}{\partial x_2} \left(\frac{\partial}{\partial x_2} \right) $	$\left(\frac{u_2}{u_2} + \frac{\partial u_3}{\partial x_3}\right) + G_i \nabla_s^2 u_2]t$
$\left[\!\left[\sigma_{13}\right]\!\right] = -\lambda_i \frac{\partial \left[\!\left[u_1\right]\!\right]}{\partial x_3} - \left[(\lambda_i + G_i)\frac{\partial}{\partial x_3}\left(\frac{\partial}{\partial x_3}\right)\right]$	$\frac{u_2}{x_2} + \frac{\partial u_3}{\partial x_3} + G_i \nabla_s^2 u_3]t$

Comsol: Geometry



Comsol: Displacement

Line Graph: Displacement field, X-component (m) Line Graph: Displacement field, Y-component (m)



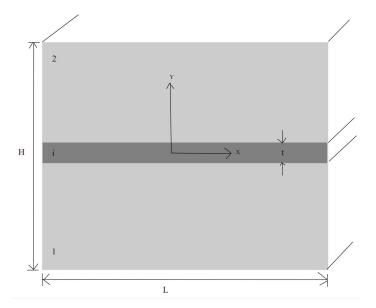
Development of Transmission Conditions for an thermoelastic interphase

GOVERNING EQUATIONS:

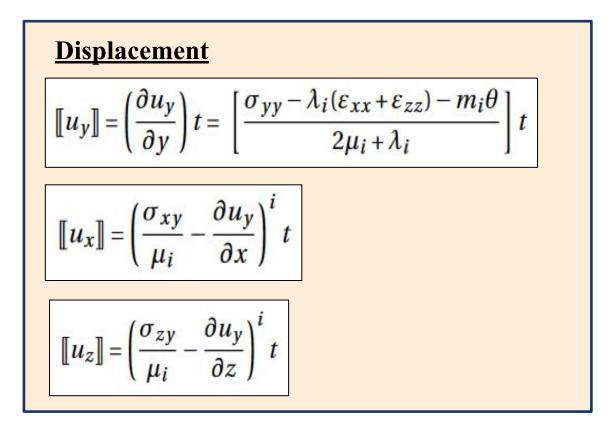
- 1. Hooke's Law: $\boldsymbol{\sigma} = \lambda \operatorname{tr}(\boldsymbol{\varepsilon}) \boldsymbol{I} + 2\mu \boldsymbol{\varepsilon} m(T T_0) \boldsymbol{I}$
- 2. Energy Equation: $\rho c_E \dot{T} = -\operatorname{div} \boldsymbol{q} + Q mT_0 \operatorname{tr}(\dot{\boldsymbol{\varepsilon}})$

Literature Background

Interface Models in Coupled Thermoelasticity - M. Serpilli,
 S. Dumont, R. Rizzoni, F. Lebon



Transmission conditions for a planar interface



$$\frac{\text{Temperature}}{\llbracket \theta \rrbracket = \theta_{A_2} - \theta_{A_1} = \left(\frac{\partial \theta}{\partial y}\right)^i t$$

Transmission conditions for a planar interface

<u>Stresses</u>

$$[\![\sigma_{yy}]\!] = -G_i \left[\frac{\partial}{\partial y} \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} \right) + \nabla_s^2 u_y \right] t + m_i t(\theta_{,x} + \theta_{,z})$$

$$\llbracket \sigma_{xy} \rrbracket = -\lambda_i \frac{\partial}{\partial x} \llbracket u_y \rrbracket + m_i t(\theta_{,x} + \theta_{,z}) - \left[(\lambda_i + G_i) \frac{\partial}{\partial x} \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_z}{\partial z} \right) + G_i \nabla_s^2 u_x \right] t$$

$$\left[\!\left[\sigma_{zy}\right]\!\right] = -\lambda_i \frac{\partial}{\partial z} \left[\!\left[u_y\right]\!\right] + m_i t(\theta_{,x} + \theta_{,z}) - \left[(\lambda_i + G_i)\frac{\partial}{\partial z} \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_z}{\partial z}\right) + G_i \nabla_s^2 u_z\right] t$$

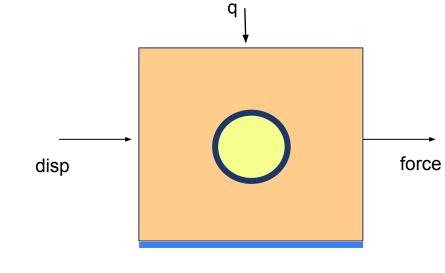
Heat Flux

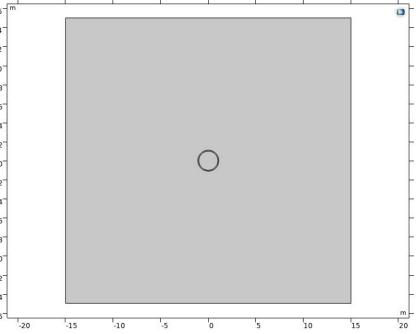
$$\mathbf{P}\left[\!\left[q_{y}\right]\!\right] = \left[Q + m\dot{\varepsilon}_{kk} - \left(\rho c_{E}\dot{T} - k_{i}\nabla_{s}^{2}T^{i}\right)\right]t$$

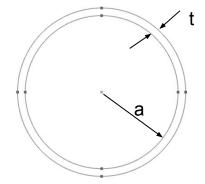
Comsol: Geometry

Parameters

Name	Expression	Value	Description
L	30[m]	30 m	Length of the domain
a	1[m]	1 m	radius of inclusion
epsilon	0.1[m]	0.1 m	thickness of the interphace
k1	10[W/m/K]	10 W/(m·K)	thermal conductivity of
k2	1[W/m/K]	1 W/(m·K)	thermal conductivity of in
ki	1e-6[W/m/K]	1E-6 W/(m·K)	thermal conductivity of in
betaTH	-1[K/m]	-1 K/m	
Т0	293.15[K]	293.15 K	ambient temperature
Q0	0.001[W/m^3]	0.001 W/m³	heat source inside the int
nu1	0.20	0.2	PR for matrix
nu2	0.35	0.35	PR for inclusion
nui	0.30	0.3	PR for interphase
E1	24e9[Pa]	2.4E10 Pa	YM for matrix
E2	2.7e9[Pa]	2.7E9 Pa	YM for inclusion
Ei	6.552e9[Pa]	6.552E9 Pa	YM for interphase
betaEL	-1	-1	

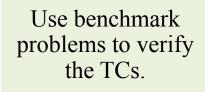






Next Steps

Rescale approach for the thermoelastic transmission conditions.



Derive thermoplastic transmission conditions.

Thank you